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Abstract We studied the size scaling behaviour in an ensemble of 8,614 non-redun-
dant protein domains belonging to the all-α, all-β, α / β, and α+ β folding classes. We
find that the most compact structural domains can be characterized by an effective
exponent νe f f = 0.39 ± 0.01, which is larger than the value for “collapsed-poly-
mers,” i.e., ν = 1/3. We also show that the global νe f f -exponent is an average of
the scaling regimes for short and long compact chains, where the values change from
νe f f ≈ 0.37 to νe f f ≈ 0.45 at chain length of ca. 269. A transition from short-chain
to long-chain scaling behaviour is found in all major folding classes, over a window of
chain lengths between 216 and 269 residues. In addition, variations in scaling expo-
nent with respect to folding class indicates that the smallest domains in the (all-β) and
(α / β) families appear to be more compact structures than the smallest (all-α)- and
(α+ β)-domains.

Keywords Polymer size · Protein folds · Folding families · Protein domains ·
SCOP database

1 Introduction

When averaged over all accessible configurations, a dilute random polymer solution
at equilibrium shows a mean radius of gyration that scales with the number of mono-
mers n as < R2

g >1/2∼ nν , where ν is the size-scaling exponent [1–3]. This exponent
provides key information about the global interactions that dominate the formation of
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the three-dimensional structure of each isolated polymer chain. When the attractive
interactions dominate (or in the presence of a poor solvent), chains resemble collapsed
polymers (CP) characterized by the scaling exponent associated with spherical shape
and compactness, νC P = 1/3 [1]. In the �-condition (or in a �-solvent), where we
find a balance of repulsion and attraction, chains resemble random walks whose size
is characterized by the scaling exponent νRW = 1/2 [1]. In contrast, when repulsions
dominate over attractions (or in the presence of a good solvent), polymer chains adopt
the more elongated form of self-avoiding-walks, whose mean size shows the scaling
exponent νS AW = 0.588±0.002 [2,3]. In the case of rigid rods or stretched polyelec-
trolytes, we find a dominant single configuration where the persistence length of the
polymer is comparable to its contour length, leading to an exponent νRod = 1 [4].

In this work, we are interested in the size-scaling behaviour of a particular class
of non-random heteropolymers, namely, single or individual proteins domains. Spe-
cifically, we deal with domains derived from the all-α, all-β, α / β, and α+ β folding
classes. These structures possess a single native state, and their molecular sizes give
rise to a narrow window of values of the radius of gyration (Rg) rather than the
canonical average < R2

g >1/2, used to describe and characterize polymers in solution.
For a given number of monomers n, protein native states exhibit a large diversity

in size that cannot be captured by a single scaling behaviour [5–7]. A subgroup of
the smallest globular proteins (i.e., those with the smallest radius of gyration within
a window of chain lengths) do however resemble qualitatively the collapsed-polymer
regime for relatively short chains (e.g., n < 300) [5–7]. Nevertheless, the significance
of this result is somewhat ambiguous because the ensemble of proteins evaluated was
derived from a small initial dataset comprising both single- and multi-domain proteins,
as well as many different folding types. In this work, we work with a greatly expanded
dataset, and focus on a better defined ensemble of structures. Our goal is to understand
the scaling regimes for individual structural domains, i.e., separate folding units in
proteins (extracted from both single and multidomain proteins) [8–13]. In particular,
we deal with the domains belonging to the four major folding classes (FCs), that is,
the all-α, all-β, α / β, and α + β folds [14–17].

The existence of commonalities in mean chain size and residue packing in protein
domains is important for understanding their structure, function, and role in folding
mechanisms [18–23]. Our main tool of analysis is the occurrence of scaling behaviour
between chain length and molecular size for the most compact single domains selected
from both single- and multidomain chains.

This paper is organized as follows. In the next section, we discuss the protocol
implemented to select a non-redundant ensemble of protein domains, and the shape
descriptors used for their size scaling characterization. In Sect. 3, we discuss the
general properties of the entire distribution of domain sizes within the present data
set. In the case of “maximally-compact” domains (i.e., the domains with the small-
est size within a fixed window of chain lengths), we discuss the role of chain length
on size scaling behaviour. Section 4 presents the distinct scaling behaviours asso-
ciated with protein domains belonging to each of the major folding classes: all-α,
all-β, α + β, and α / β. Section 5 highlights the deviations from global scaling of
selected “common folds” within these folding classes. We close with a summary
of conclusions.
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2 Shape characterization within an ensemble of non-redundant
protein domains

2.1 Molecular size scaling

We deal with a selected ensemble of individual domains, comprising both single
domain chains and individual domains extracted from multidomain chains. We fol-
low the definitions of domain topology provided by the Structural Classification of
Proteins (SCOP) data base (version 1.73) [14–17], and use the coordinate data of the
selected domains extracted from the Protein Data Bank (PDB) [24,25]. Protein size
and density is characterized by the radius of gyration (Rg) of the α-carbon trace. When
considering a full chain containing n amino acid residues, the expression for the radius
of gyration becomes:

Rg =
{

1

n

n∑
i=1

||ri − r0||2
}1/2

, (1)

where ri and r0 are, respectively, the position vector of the i th α-carbon and r0 the
geometrical centre of the α-carbon chain. Protein chains whose mean size is denoted
by Rg can include a number of domains. In contrast, the radius of gyration of an
individual domain is denoted by rg , where rg ≤ Rg; in the case of rg , the set of {ri }-
coordinates in Eq. (1) is restricted to the contiguous section of primary sequence that
spans a particular structural domain. In this work, we are concerned with the domain
radii rg . Evidently, in the case of single-domain proteins we have Rg = rg .

In systems with true asymptotic scaling behaviour (e.g., random homopolymers at
high dilution), Rg is a configurationally-averaged value that follows the power law:
[1]

Rg ∼ Lnν, (2)

where n � 1 and ν is the size-scaling exponent. As explained in Sect. 1, this exponent
depends only on the dominant interactions between monomers, as well as on whether
the polymer is two- or three-dimensional (i.e., flatted by adsorption or embedded in
3D-space). In contrast, the pre-exponential length L depends on the particular details
of polymer shape, e.g., type of monomer, sequence, secondary-structural content and
type of fold. Although protein chains seldom surpass n = 1, 000 (prohibiting an
assessment of true asymptotic scaling behaviour), it is still possible to estimate an
effective scaling exponent that fits the law in Eq. (2) (within a range of n values) [5–7].
Whenever a subset of protein domains demonstrates a comparable scaling behaviour,
we will write:

rg ∼ �nν̄ , (3)

where the �-length and the ν̄-exponent play the same role as L and ν in Eq. (2),
constrained to an individual domain.
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Families of domains that share an effective ν̄-exponent (cf. Eq. 3) will be said to
be in the same “compactness regime.” If we focus our analysis within a given folding
class, the above scaling law can be rewritten with a more specific designation:

[rg]FC ∼ �FC nν̄FC , (4)

where the subindex takes the values FC = α, β, α + β, α / β depending on the par-
ticular folding classes being considered. Domains in the “collapsed-polymer regime”
satisfy ν̄FC ≈ ν̄C P = 1/3. However, belonging to a scaling regime with an exponent
ν̄FC = 1/3 does not ensure that the domains will have the smallest possible abso-
lute size. It is possible for some domains to belong to a less compact regime (i.e.,
ν̄FC > 1/3) and have smaller rg-values than some domains whose size is commen-
surate with the ν̄FC = 1/3 regime.

2.2 Selection of non-redundant single domains

We used the SCOP data base as the basis to organize our selected ensemble of pro-
tein domains. This data base organizes domains into lineages of “common folds”
within larger “folding classes” based on similarities in folding topology [14–17].
Entries in SCOP are manually curated; domains are inspected visually and classified
according to consensual, albeit subjective criteria. In this work, we consider the four
principal folding classes (or root nodes), corresponding to the (all-α), (all-β), (α+ β),
and (α / β)-folds. The all-α and all-β folds consist almost exclusively of helical and
β-sheet structures, respectively, while the α+ β and α / β classes contain varying
degrees of both secondary-structural elements. In (α+ β)-domains, helices and anti-
parallel-sheets are spatially segregated; in the (α / β)-folds, helices and β-sheets typi-
cally alternate, allowing the β-strands to organize in a parallel fashion, e.g., the TIM-
barrels [26,27].

Given the high level of redundancy in the PDB and SCOP data bases, it is important
to avoid biasing the size-scaling analysis by eliminating all duplicate entries from our
data set. We devised the following selection protocol to ensure one entry per domain
type:

(a) Only one structure was used per domain among entries with no missing residues
and at least a 3.2Å-resolution.

(b) Domains with more than 90% sequence homology were represented by a single
entry, unless they differed in chain length by more than fifteen residues, in which
case they are considered distinct entries.

(c) Very short chains were deemed poorly-structured peptides and often omitted;
typically, but not always, protein chains with less than 35 residues appear as
“outliers” in our analysis.

The present study began with an ensemble of 85,686 single domains in the SCOP
data base, with the following breakdown in terms of folding class: 14,824 for FC = α

(i.e., (all-α)-domains), 23,547 for FC = β, 21,499 for FC = α+ β, and 25,816
for FC = α / β. When subject to the above screening procedure, the set is reduced
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roughly to about 10% of the total entries. Specifically, we retain 8,614 non-redundant
structures, with the following distribution according to folding class: 1,741 (all-α)-
domains, 2,527 all-β, 2,099 α+ β, and 2,247 (α / β)-domains. This list includes indi-
vidual domains associated with both single- and multi-domain proteins. The radius of
gyration of each chain was computed from the α-carbon coordinates extracted from
entries in the PDB archive. In the next section, we use these results to analyze the
size-scaling behaviour in isolated protein domains.

3 Effect of chain length on the size scaling of individual protein domains

As noted in the literature [5–7], the wide span of molecular size distributions ensures
that scaling behaviour can only be observed in restricted subensembles of proteins.
Here, we focus on the scaling associated with the “most compact” protein domains,
i.e., domains that have the smallest rg-values for a given chain length. In practice, we
have grouped the selected entries in bins of �n-length, beginning from a minimum
n0 = 26, and then selected the smallest structure within those bins:

min{N j }
[
rg

]
j = [

rg
]∗

j (5)

where [rg]∗j is the domain with the smallest radius of gyration among the N j -domains
found within the j th-bin. If we consider the �n = 10 case, a generic j th-bin will
contain (at most) the ten structures with the smallest rg-values for domains with chain
lengths in the range (n0+( j −1)�n) ≤ n ≤ (n0+ j �n) with j ≥ 1; the [rg]∗j -value
is the smallest value for the structures in that bin. By applying the criterion in Eq. (5),
we obtain a set of {[rg]∗j , n j }-values, where n j denotes the number of residues for the
selected domain in the j th-bin, and [rg]∗j corresponds to the rg-value of the selected
smallest domain.

Figure 1 shows the radii of gyration for the entire set of 8,614 non-redundant
domains (in small grey circles). In addition, the black squares in Fig. 1 denotes the
domains satisfying criterion Eq. (5) for a �n = 10 bin size.

The first point in Fig. 1 is the WW-domain of the YJQ8 yeast protein (PDB entry
1e0n, chain A). This (all-β)-structure is the smallest domain in the first bin (i.e.,
26 ≤ n ≤ 35), corresponding to n1 = 27 and [rg]∗1 = 8.451Å. We have sufficient
number of entries to select compact structures up to the 66th bin (685 ≤ n ≤ 695),
before we encounter the first “empty bin,” i.e., no domains in the selected set. From
that bin onwards, the [rg]∗j -values become progressively more sporadic up to n ≈ 800
and rare after that; the last entry in Fig. 1 corresponds to nitrate reductase A in E. coli
(PDB entry 1y5i, chain A), corresponding to n = 1, 074 and [rg]∗ = 30.841Å.

Despite the large dispersion in rg-values in Fig. 1, it is apparent that the smallest
isolated domains exhibit not only an effective size-scaling behaviour, but also what
appears to be more than one scaling regime in terms of ν̄-exponents. Upon close inspec-
tion, we find clear evidence of two distinct size-scaling exponents over the range of
chain lengths considered, denoted here as ν̄(short) and ν̄(long).

Figure 2 highlights the results for the most compact {[rg]∗j , n j }-pairs included in
Fig. 1, emphasizing the two scaling regimes for short and long chains, as well as a
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Fig. 2 Occurrence of two optimal scaling regimes in the most compact protein domains. The black squares
in Fig. 1 are divided into two ensembles: “short chains” (black circles) and “long chains” (white circles).
The highlighted structures illustrate that all folding classes are represented within this set. The figure gives
the scaling ν̄-exponents arising from the linear regressions. See Fig. 3 and the text for the criterion used to
determine the “transition” chain length n∗

1,2 that divides these two scaling regimes

number of representative structures. The insets show that all four major folding classes
are represented among the most compact domains.

The black circles in Fig. 2 span the range of “short-chain” regime, while the white
circles define the “long-chain” regime. The subsets provide optimal fittings to the
scaling law in Eq. (3), when maximizing the correlation coefficients in a sequence of
linear regressions with the criterion illustrated in Fig. 3.
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Fig. 3 Determination of the n∗
1,2 chain length for the transition between the short- and long-chain regimes

in Fig. 2. The middle diagram gives the sequence of square correlation coefficients (sqcc) arising from con-
secutive 7-point fittings of ([rg]∗, n)-values in the top diagram. (The figure indicates the range of n-values
corresponding to the last fitting entry for the short-chain regime, n ∈ [198, 260], and the first fitting entry
for the long-chain regime, n ∈ [269, 333].) The bottom diagram gives the corresponding sequence of slopes
in the 7-point regressions (i.e., the ν̄-exponents), with their 95% confidence intervals. The exponents for
collapsed polymers (ν = 1/3) and random walks (ν = 1/2) are given for reference. The arrow in the top
diagram indicates the location of the transition, as marked by the sudden loss of correlation in the middle
diagram

The top panel in Fig. 3 depicts the set of radii of gyration for ln n ≥ 4 (cf. Fig. 2).
From this data set, we produce a series of linear fittings, each generated from seven
consecutive data points. The square correlation coefficients (sqcc) arising from these
regressions appear in the middle diagram, where each 7-point fitting is plotted at the
n-value for the middle point in the set (i.e., the fourth point of the seven). For example,
the first point in the diagram corresponds to the seven consecutive bins with entries
n ∈ [27, 88], while the second point corresponds to the entries n ∈ [37, 97] (i.e., drop-
ping the entry corresponding to n = 27 and incorporating the one for n = 97). The
corresponding entries for the regression of these 7-point slopes (i.e., ν̄) are depicted
in the bottom diagram; error bars represent 95% confidence intervals.
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An analysis of the square correlation coefficients reveals two scaling regimes:

(a) Up to the 7-point fitting beginning with entry n = 198, i.e., the dataset n ∈
[198, 260], we find a high-quality correlation with 0.932 ≤ sqcc ≤ 0.994. The
slopes associated with these fittings yield an average ν̄ = 0.371 ± 0.014 with
95% confidence, after omitting the first point in the middle diagram as an outlier.

(b) The quality of the 7-point correlations diminishes for n > 198; for example,
including the next entry with n = 207 changes sqcc=0.943 to sqcc=0.796. This
drop correlates with a change in ν̄-value and a larger statistical error (cf. Fig. 3,
bottom diagram).

(c) The linear regressions improve again for longer chains. Within the range 269 ≤
n ≤ 441, the square correlation coefficient satisfies 0.844 ≤ sqcc ≤ 0.944;
we also find a range of slopes with average ν̄ = 0.450 ± 0.040, consistently
above the values for shorter chains in (a), despite the larger uncertainty. The
beginning of this second scaling regime is indicated in Fig. 3 by the 7-point
fitting with n ∈ [269, 333] (i.e., corresponding to the bins with entries n =
269, 279, 288, 297, 310, 318, and 333). The first point in this set determines the
transition from short- and to long-chain scaling behaviour (indicated by the arrow
in Fig. 3 (top) at n∗

1,2 = 269). Note that there are no “excluded” bins, since the last
entry for the short-chain regime is n = 260 and the first entry for the long-chain
regime is n = 269.

(d) The linear fittings worsen for n > 543, except for a small window of high correla-
tion in the interval n ∈ [560, 723](sqcc > 0.894) with a larger effective scaling
exponent, ν̄ = 0.83 ± 0.13. This result suggests that a third scaling regime may
be present for single-domain compact proteins with very long chains; however,
given the scarcity of entries beyond n = 543, the precise value of the correspond-
ing scaling exponent is difficult to ascertain.

Our conclusions are summarized by the two linear fittings displayed in Fig. 2. The
two regression lines, computed with entries before and after n∗

1,2 = 269, provide a
clear distinction between two effective size-scaling exponents for single domains:

ν̄(short) = 0.369 ± 0.009, (twenty-three points with 37 ≤ n ≤ 260), (6a)

ν̄(long) = 0.454 ± 0.021, (twenty-six points with 269 ≤ n ≤ 543), (6b)

with 95%-confidence intervals. If we ignore the n∗
1,2-transition, a fitting over all points

in Fig. 2, for 37 ≤ n ≤ 543, gives a global exponent ν̄ = 0.373 ± 0.007 (cf.
Eq. 3). If extended to the entire ensemble of smallest domains in Fig. 1, we obtain
ν̄ = 0.388 ± 0.009 (sixty-five points with 37 ≤ n ≤ 796, with longer chains omitted
as outliers due to low sampling). Both values match the effective ν̄-exponent esti-
mated in full protein chains [5–7], independent of domain number. (Ref. [6] finds
ν̄ = 0.38 ± 0.02 from a small set of proteins extracted with a �n = 50 binning).
However, Eq. (6) indicates that this exponent is an average of two distinct regimes: one
of them slightly above that of collapsed chains (i.e., ν̄(short) ≈ 0.37 > νC P = 1/3),
while the other is closer to the size-scaling law for random chains (ν̄(long) ≈ 0.45 >

νRW = 1/2).
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The consistency of these observations has been corroborated with two other anal-
yses:

(i) We re-estimated the location of the n∗
1,2-transitions by analyzing the sequence

of linear fittings comprising q-points, with 3 ≤ q ≤ 6. Although these correla-
tions have larger statistical errors, they indicate transitions between two distinct
scaling regimes at roughly the same positions as the q = 7 fitting (i.e., within
the same bin or its two nearest neighbours). However, the q = 7 case is “opti-
mal” in the sense that it defines a two-regimes transition over contiguous bins,
as the last entry used to fit the short-chain regime is n = 260 while the first
entry in the fitting for the long-chain regime is n = 269.

(ii) We produced alternative sets of most compact domains by using other �n = 10
binning schemes. For example, instead constructing our ensemble from a first
bin n ∈ [26, 35], we have repeated our study using all possible starting points for
the first bins, i.e., n ∈ [26, 35], n ∈ [27, 36], and so forth until the last possible
choice of initial �n = 10 binning, i.e., n ∈ [35, 44]. These alternative binning
schemes often produce a different {[rg]∗j }-selection, yet linear correlations that
cannot be distinguished within statistical error.

The existence of distinct size-scaling regimes for short and long chains has been
noted previously in the literature [5–7], and tentatively attributed to the more likely
occurrence of an onset of multiple domains in long-chain proteins. The results in this
section show that this difference is an intrinsic property of single-domain scaling. We
can infer that short and long compact proteins (i.e., those with n ≥ 269) are organized
structurally in a different fashion. In the next section, we discuss how these scaling
regimes relate to folding classes.

4 Effect of folding class on size-scaling behaviour

Using the SCOP classification, we have extended the previous analysis to determine
the effect of folding class on the ν̄FC-exponents introduced in Eq. (4). As in Sect. 3,
we determine the domains with the smallest radius of gyration within a given bin of
chain lengths. The set of molecular sizes for the most compact entries within a given
folding class is denoted as {[rg]∗j,FC }, corresponding to the ensemble of j th-bins for
FC-domains for a particular bin selection. Here, we use �n = 10 for all folding
classes.

Figure 4 sorts the original distribution of 8,614 non-redundant single domains into
the four major folding classes (cf. Fig. 1). Despite the wide scattering, it is clear
that the distributions are not equal. The biggest differences can be seen between the
(all-α)- and (α / β)-domains: whereas the former contains the fewer number of entries
(namely, 1,741) and the largest dispersion, the latter features a narrow, highly corre-
lated distribution of 2,247 domains. Even a cursory inspection indicates the existence
of scaling laws for {[rg]∗j,FC }-values within each of the FC-families. In the case of the
(all-α)-domains, Fig. 4 highlights in black a selection of the most compact six-hairpin
glycosidase (α / α)-toroids, a common fold that dominates the all-α scaling regime
over the span of large n-values (vide infra).

123



178 J Math Chem (2012) 50:169–186

3 4 5 6 7
1.5

2.5

3.5

3 4 5 6 7
1.5

2.5

3.5

ln n

3 4 5 6 7
1.5

2.5

3.5

3 4 5 6 7
1.5

2.5

3.5

ln n

ln
 (

[r
g 
] j,

α
/Å

)
*

ln
 (

[ r
g 
] j,

β
/Å

)
*

ln
 (

[r
g 
] j,

α+
β
/Å

)
*

ln
 (

[r
g 
] j,

α/
β
/Å

)
*

all -α all -β 

α+β α/β 

Fig. 4 Four distinct distributions of radius of gyration for the ensembles of non-redundant domains in the
major folding classes. The distribution of (α / β)-folds can be distinguished from the others by its low dis-
persion. The points highlighted in black in the (all-α)-folds correspond to the α / α-toroidal (or α / α-barrel)
common fold. (See text for the number of data points in each diagram)

Figure 5 shows the results for the {[rg]∗j,FC , n j }-pairs extracted from the diagrams
in Fig. 4. The two-colour coding indicates the distinct scaling behaviour for “short”
and “long,” determined with the criterion of optimal squared correlation coefficients
(sqcc) used in Sect. 3. The resulting n∗

1,2-transitions points are given by arrows in the
diagrams of Fig. 5.

Table 1 shows the estimates for the ν̄
(short)
FC - and ν̄

(long)
FC -exponents for the families

of FC-domains; these two values characterize the size-scaling behaviour for n < n∗
1,2

(“short-chain” regime) and n ≥ n∗
1,2 (“long-chain” regime), respectively. For com-

pleteness, Table 1 gives also the global {(ν̄)
(global)
FC }-exponents for the linear regression

over the entire range of change lengths, as well as the number of points and range of
n-values used in the least-square fittings. Outliers for very short and very long chains
have been eliminated in some cases (principally for the (α / β)-fold); structures are
considered outliers when their inclusion in the sequences 7-point regressions breaks
the pattern of large square correlation coefficients, as discussed in Sect. 3, or when
they arise from bins with very low numbers of proteins.

Several important observations can be made from the results collected in Table 1:

(i) All folding classes exhibit two distinct regimes of (ν̄)FC -values (cf. Eq. 4),
although the differences appear less well marked in the case of (all-α)-folds.

(ii) The short-chain regime for (α / β)-folds is statistically identical to that of col-
lapsed polymers (i.e., maximally-compact structures with (ν̄)C P = 1/3). In
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Table 1 Size-scaling exponents for the most compact domains in the four main folding classes (cf. Eq. 4)

FC ν̄
(short)
FC Range (short) ν̄

(long)
FC Range (long)a (ν̄)

(global)
FC Points

all-α∗ 0.426 ± 0.018 [37, 235] 0.431 ± 0.046 [244, 510] 0.404 ± 0.011 45
all-β 0.362 ± 0.018 [45, 202] 0.416 ± 0.027 [216, 452] 0.372 ± 0.008 41
α + β 0.382 ± 0.021 [55, 207] 0.449 ± 0.084 [216, 370] 0.392 ± 0.014 33
α/β 0.328 ± 0.020 [77, 260] 0.465 ± 0.029 [269, 534] 0.363 ± 0.013 45

The “short-chain” and “long-chain” regimes have been determined with the optimal-correlation approach
illustrated in Fig. 3. The table gives the range of chain lengths used for the linear correlations; a �n = 10
bin size was used to select representative domains with smallest radii of gyration [rg]* in each bin interval.

The exponent (ν̄)
(global)
FC characterizes the fitting over the complete ensemble of selected domains; the last

column gives the total number of points used in estimating the (ν̄)
(global)
FC -exponent. Error bars correspond

to 95% confidence intervals
∗ The data for the all-α domains excludes the α / α toroids that appear in the long-chain regime (see text)
a The underlined entry represents the chain length value for the n∗

1,2-transition between the short- and
long-chain regimes (see Fig. 5)

contrast, the short-chain regimes for (all-β)- and (α+ β)-folds exhibit slightly
larger exponents, comparable to the global exponents for all domains, i.e., ν̄ =
0.388 ± 0.009 (cf. Sect. 3). The exponent for the (all-α)-domains proves to be
slightly larger than this value (see (iv) below).
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(iii) The long-chain domains appear in a less-compact regime for all folding clas-
ses, although the change in ν̄-value is small in (all-α)-domains. Within the
95%-confidence intervals, the ν̄

(long)
FC -exponents for FC = α+ β and α / β are

comparable to that of random polymers (i.e., (ν̄)R P = 1/2), while the corre-
sponding value for long-chain all-β domains is slightly lower than these two.
These values exclude data for n > 534, which show a systematic deviation
from linear correlations according to the criteria discussed in Sect. 3.

(iv) As shown in Fig. 5, the long-chain (all-α)-domains exhibit two distinct popula-
tions, one of them being the compact (α / α)-toroids highlighted in Fig. 4 (black
circles). The latter structures comprise eleven domains with a scaling exponent
ν̄ = 0.432 ± 0.042 for 363 ≤ n ≤ 488. If we exclude the (α / α)-toroids to
avoid any structural bias, we find twenty-three distinct structures which pro-
duce ν̄

(long)
α = 0.431 ± 0.046 in the range 244 ≤ n ≤ 510 (cf. Table 1). The

latter two exponents are statistically indistinguishable, and comparable with
ν̄

(short)
α = 0.426 ± 0.018. However, it should be noted that, if all structures

were included, the size-scaling exponent would be ν̄
(long)
α = 0.326 ± 0.078.

This uncharacteristically low value arises from the fact that the (α / α)-toroid
population begins at n = 326, while the non-toroids start at n = 248; this
mismatch skews the results in the long-chain region when both protein sets
are considered together. Evaluated in isolation, each separate population pro-
duces ν̄ = 0.43±0.04, although they can still be distinguished by their distinct
�FC -values in Eq. (4).

(v) Although the (ν̄)
(global)
FC -exponents are less sensitive to folding class, it is clear

that (ν̄)
(global)
β and (ν̄)

(global)
α/β are the smallest. The (ν̄)

(global)
FC -exponents for

FC = β, α+β, and α/β are averages of the short-chain and long-chain regimes.
In contrast, the scaling behaviour for all-α domains is the least sensitive to chain
length (that is, ν̄

(long)
α ≈ ν̄

(short)
α ), in addition to being the least compact of all

the FC-families (at least, with respect to the compactness level of collapsed
polymers).

In summary, we observe that all folding classes show a distinct two-regime scaling
behaviour that depends on chain length. The actual values for the scaling exponents
vary however with the folding features, where the short-chain (α / β)-domains are the
most compact and the (all-α)-domains are the least. It is likely that these differences
in spatial organization relate to intrinsic properties of secondary-structural elements:
[26–28]

(a) α-helices are approximately ten amino-acid long, relatively rigid objects; they
adopt a restricted number of relative orientations, favouring the formation of
elongated bundle-like objects with ν̄ > 1/3.

(b) On average, β-strands are five amino-acid long objects; their smaller size per-
mits a larger variation in relative orientations, leading to the formation of curved
β-sheets that ensure spheroidal compact structure with ν̄ ≈ 1/3. Considering
that the (α / β)-domains alternate the α- and β-contents, instead of segregating
them as in the (α+ β)-domains, it is then reasonable that the former adopt more
compact structures than the latter, thus ν̄

(short)
α / β < ν̄α + β(short).
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Fig. 6 Breakdown of the most compact domains in Fig. 1 according to folding class. The thin arrows
indicate the corresponding n∗

1,2-transition lengths for folding classes (cf. Fig. 5). The thick arrow on top
indicates the global n∗

1,2-transition length (i.e., without reference to folding class). The dashed lines corre-
spond to the linear regressions in Fig. 2. Note that, although the (α / β)-folds dominate the longer chains,
all foldings classes are represented throughout the ensemble

(c) The fact that all ν̄
(long)
FC -exponents are larger than their ν̄

(short)
FC counterparts sug-

gests that longer-chain domains have a lower monomer density, regardless of
their folding features. This distinct behaviour matches experimental evidence
that shows that long-chain and short-chain proteins fold by different mechanisms:
while most small proteins fold cooperatively in a two-state process resembling
qualitatively a collapsed transition, long-chain proteins fold via a three-state
process involving partly-folded, less compact intermediates [18,22,26,27].

Figure 6 complements our analysis by showing the breakdown of the most-compact
domains in Fig. 2 (black squares) in terms of the four major folding classes. For clarity,
Fig. 6 also indicates the location of the n∗

1,2-transition points between the short- and
long-chain regimes for the FC-families (cf. Table 1). This diagram indicates clearly
that, while the line of most-compact domains includes representatives of all folds, the
(α / β)-folds represent a majority (57%) and their distribution is not equal in terms of
chain length.

A detailed breakdown shows:

(i) In the range of short chains, namely 37 ≤ n ≤ 260, all folding classes con-
tribute a similar amount, with 21% all-α, 25% all-β, 29% (α+ β), and 25%
(α / β).

(ii) In the region of long chains (i.e., 269 ≤ n ≤ 543, excluding the low-sampling
areas n > 543), we find a strong bias for (α / β)-folds (72%), while 10% are
all-α, 14% all-β, and only 3% (α+ β)-domains. The fact that the vast majority
of most-compact long-chain domains belong to the (α / β)-family is consistent
with our previous observation that the latter fold has the smallest ν̄

(long)
FC -expo-

nent (cf. Table 1).
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5 Deviation from the global scaling behaviour in particular protein lineages

Figures 2 and 6 illustrate the scaling behaviour for structural domains with the small-
est rg-values within the four major folding classes. Folding class, however, represents
only a top level of domain organization. In this section we want to address briefly
the following question: How much do individual protein families contribute to the
most-compact scaling regime? Do the scaling behaviours described in Sect. 4 extend
to other lower levels of domain organization, e.g., the protein lineages within each of
the major FC-families?

Within each structural class, we find the “common folds,” i.e., distinct motifs that
share a similar secondary-structural content and overall global spatial arrangement
[14–16,29,30]. In turn, common folds are associated with different protein lineages.
In this section, we explore whether the scaling behaviour in Sect. 3 and 4 extends to
lineages of common folds. In other words, suppose that the most compact domain in
a given lineage belongs to a family of structures satisfying a scaling law as in Eq. (2).
Then, do all other domains in the same protein lineage share the same ν̄-exponent? In
order to address this issue, we have considered examples of lineages that contain at
least one of the most compact domains in Figs. 2 and 6.

Figure 7 displays typical examples for families of common folds in each of the four
major folding classes. The following observations can be made:

(i) The protein 1c9b (chain Q) provides one of the domains included in the scaling
law for the most compact structures (dashed line). This unit belongs to a family
of sixteen all-α cyclins highlighted in the top left diagram. Despite the disper-
sion, it is evident that the cyclins follow a different size-scaling law with a larger
effective exponent ν̄ = 0.52 ± 0.14, consistent with that for polymers swollen
in a good solvent. The other highlighted compact domains, indicated with black
circles, belong to the family of (α / α)-toroids. This lineage comprises forty-two
structures, and it includes some of the most compact long-chain (all-α)-domains,
among them the six-hairpin glycosidase (protein 1ks8, chain A, in Fig. 7). After
eliminating the first protein in this set as an outlier, the (α / α)-toroids are char-
acterized by an effective scaling exponent ν̄ = 0.29 ± 0.06, corresponding to
thirty-seven domains in the range 271 ≤ n ≤ 642. As discussed in Sect. 4,
the most compact (α / α)-toroids (dominated by six- and seven-hairpin glyco-
sidases) are characterized by ν̄ ≈ 0.43; the entire lineage, however, follows a
collapsed-polymer regime (ν̄ ≈ 1/3), in agreement with previous findings in
other common folds [31].

(ii) Two lineages of all-β proteins appear in the top right diagram, i.e., the 7-bladed
β-propellers and the β-trefoils. The two highlighted structures, 1kn� for the
β-propellers and protein 1a12 for the β-trefoils are among the globally most
compact domains. It is clear that the rest of the proteins in these families move
away from the most-compact behaviour (dashed line). We estimate similar effec-
tive scaling exponents: ν̄ = 0.54 ± 0.07 for the β-trefoils and ν̄ = 0.45 ± 0.15
for the 7-bladed β-propellers, which qualitatively border �-state behaviour.

(iii) The zincin-like proteins are a family of (α+ β)-folds which include the high-
lighted protein 1s4b among those that determine the scaling law for the
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Fig. 7 Size scaling behaviour for selected protein lineages in the four major folding classes. The arrows
indicate structures that belong to the regime for the most-compact domains (dashed line). The cyclins,
β-propellers, and β-trefoils deviate from the compact-domain regime with approximate exponents ν̄ ≈ 0.54
and ν̄ ≈ 0.45, respectively, while the highlighted (α + β)- and (α / β)-folds also deviate but maintain a sim-
ilar exponent (i.e., ν̄ = 0.4). The (α / α)-toroid lineage (black circles) includes the most compact structures
highlighted in black in the top-left panel in Fig. 4; this common fold approaches the collapsed-polymer
regime with ν̄ ≈ 0.3 (see text)

most-compact domains (dashed line). In contrast to (i) and (ii), the fifty-two
structures in this lineage match the dashed-baseline behaviour despite their
larger radii of gyration, leading to an estimated ν̄ ≈ 0.40 ± 0.02.

(iv) The TIM-barrels in the lower right diagram includes many of the most-com-
pact (α / β)-domains (e.g., the highlighted protein 1wky). Despite its systemat-
ically larger rg-values, we find that the TIM-barrel lineage follows the scaling
behaviour of the most compact domains: the 357 structures in this set produce
ν̄ ≈ 0.38 ± 0.02. This situation is comparable to that of zincin-like proteins in
(iii).

A similar trend can be observed in Fig. 8, which displays the molecular size regime
for the α–α superhelices, a common fold within the all-α folding class that spans the
entire range of n values considered here [14–16]. Five representative cases are high-
lighted on the right-hand side, corresponding to the black circles in the main diagram.
Two of these structures are among the most compact domains in Fig. 6, namely, the
globular and spheroidal proteins 1c9� and 1uk� (denoted as A and E). In contrast,
helices are arranged in an elongated fashion in structures B, C, and D, and thus they
are distinctly less compact. A linear fitting over the ensemble of seventy-eight α–α
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Fig. 8 The α–α superhelices, a common fold within the all-α folding class, demonstrates a systematic
deviation from the most-compact scaling behaviour. The structures in black circles (A–E) are highlighted
on the right-hand side. Proteins A and E belong to the most-compact domains (dashed line); the other
structures are less spheroidal and are far removed from this line

superhelices in Fig. 8 gives:

ln rg = (0.498 ± 0.061) ln n + (0.37 ± 0.28), (7)

with 95% confidence intervals over a span of 29 ≤ n ≤ 876. In summary, although
protein 1c9� belongs to the compact domains with effective scaling exponent ν̄ =
0.40 ± 0.01 (cf. Sect. 3), the scaling law restricted to the α–α superhelices gives an
exponent ν̄ = 0.50 ± 0.06, which is in the range of polymers in the �-condition. The
contrast between these two exponents is well illustrated by proteins 1b3u (point D)
and 1uk� (point E) in Fig. 8: while the former’s non-spheroidal form places it clearly
in line with ν̄ ≈ 0.5 slope, the latter’s globular shape makes it an outlier closer to the
line with ν̄ ≈ 0.4 slope.

The results in Figs. 7 and 8 confirm that lineages of common folds can also exhibit
size scaling behaviour [31]. However, having one of their members among the most
compact domains does not imply that the entire family will follow the same behaviour.
Whether or not a group of related proteins can be characterized by the scaling exponent
ν̄ ≈ 0.4 depends entirely on its average spatial organization and the globularity of the
folding motif.

6 Conclusions

In this work, we have shown the existence of a scaling behaviour relation between the
radius of gyration and the chain length in subgroups of isolated domains. Although
protein domains exhibit a wide distribution of molecular size, the domains with the
smallest radii for a given length exhibit well-defined scaling laws.

We find two distinct scaling laws for the most compact domains, characterized
by two exponents: (i) short-chain domains belong to a scaling regime for structures
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slightly less compact than collapsed polymers, ν̄(short) = 0.37 ± 0.01 > ν̄C P = 1/3;
(ii) the long-chain regime shows a level of compactness slightly above that for random
polymers, ν̄(long) = 0.45 ± 0.02 < ν̄RW = 1/2. Recent work indicates that these dif-
ferences do not depend on whether the domains are extracted from simple or complex
(i.e., multi-domain) proteins [32]. On the other hand, we have shown here that these
different scaling behaviours depend on folding class.

When we consider the set of individual domains with the minimal rg-values in each
�n-bin (i.e., without reference to folding class), the transition between these two scal-
ing regimes can be estimated at n ≈ 269 (within the certainty of a �n = 10 binning).
When the type of fold is taken into account, our results show again the occurrence
of two scaling laws within each FC-family, with the (all-β)- and (α / β)-folds pro-
viding the most compact behaviours. In the case of short chains, the (α / β)-domains
approach the ν̄C P = 1/3 value for most compact polymers. Even in the cases where
we find similar ν̄-values, the role of folding class can be recognized by the distinct
�FC -parameters (cf. Eq. 4) and a shift in n∗

1,2-transition chain lengths.
In regard to the latter n∗

1,2-transitions, we have shown that the global value n∗
1,2 ≈

269 is an intrinsic property of individual domains, and not associated with the tran-
sition from single- to multi-domain proteins, as previously speculated [5–7]. From
the results in Sect. 4, it is clear that the global n∗

1,2 -value is determined by a single
structural class, i.e., the most compact (α / β)-domains.

Finally, we have also shown that scaling behaviour can also be found within families
of proteins that share a common fold or biological function. In these cases, however,
the power laws observed are often characterized by larger ν̄-exponents, corresponding
to less globular and compact domains. Examples of linear scaling (ν ≈ 1) have also
been noted in the literature for selected protein families [31].

Our work provides insight into the spatial organization of the most compact
domains. The fact that size behaviour can be captured by a single ν̄-exponent suggests
a common principle underlying domain organization. Given that the ν̄-exponent is
determined by the nature of the monomer-monomer interaction [1], we can conjecture
that the structure of compact proteins arises from the same dominant “forces,” despite
differences in fold, function, or lineage among proteins. In other words, proteins must
share the same balance of monomer attraction and repulsion, with the addition of
spatial restrictions imposed by the presence of secondary structure.

On the other hand, the variation of ν̄-exponents with chain length is consistent with
the experimental observation that small and large globular proteins fold differently
(according to two- and three-state mechanisms, respectively) [26,27]. Our results
would indicate that three-state mechanisms (i.e., those associated with long-chain
protein domains) lead to the formation of less compact native structures.
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